On the limits of resolution and visual angle in visualization


Journal article


C. G. Healey, A. P. Sawant
ACM Transaction on Applied Perception, article 20, vol. 9(4), 2012

View PDF Semantic Scholar DBLP DOI
Cite

Cite

APA   Click to copy
Healey, C. G., & Sawant, A. P. (2012). On the limits of resolution and visual angle in visualization. ACM Transaction on Applied Perception, 9(4).


Chicago/Turabian   Click to copy
Healey, C. G., and A. P. Sawant. “On the Limits of Resolution and Visual Angle in Visualization.” ACM Transaction on Applied Perception 9, no. 4 (2012).


MLA   Click to copy
Healey, C. G., and A. P. Sawant. “On the Limits of Resolution and Visual Angle in Visualization.” ACM Transaction on Applied Perception, Article 20, vol. 9, no. 4, 2012.


BibTeX   Click to copy

@article{c2012a,
  title = {On the limits of resolution and visual angle in visualization},
  year = {2012},
  edition = {article 20},
  issue = {4},
  journal = {ACM Transaction on Applied Perception},
  pages = {},
  series = {},
  volume = {9},
  author = {Healey, C. G. and Sawant, A. P.}
}

Abstract

This article describes a perceptual level-of-detail approach for visualizing data. Properties of a dataset that cannot be resolved in the current display environment need not be shown, for example, when too few pixels are used to render a data element, or when the element's subtended visual angle falls below the acuity limits of our visual system. To identify these situations, we asked: (1) What type of information can a human user perceive in a particular display environment? (2) Can we design visualizations that control what they represent relative to these limits? and (3) Is it possible to dynamically update a visualization as the display environment changes, to continue to effectively utilize our perceptual abilities? To answer these questions, we conducted controlled experiments that identified the pixel resolution and subtended visual angle needed to distinguish different values of luminance, hue, size, and orientation. This information is summarized in a perceptual display hierarchy, a formalization describing how many pixels—resolution—and how much physical area on a viewer's retina—visual angle—is required for an element's visual properties to be readily seen. We demonstrate our theoretical results by visualizing historical climatology data from the International Panel for Climate Change.


Share



Follow this website


You need to create an Owlstown account to follow this website.


Sign up

Already an Owlstown member?

Log in